БЕРИЛЛИЕВЫЕ СПЛАВЫ, сплавы на основе бериллия (Be), Пром. применение Б. с. началось в 50-х гг. 20 в. Получение изделий из Be путём пластич. деформации затруднено, т. к. Be обладает низкой пластичностью (вследствие гексагональной структуры и наличия примесей). При пластич. деформации Be скольжение происходит в первую очередь в зёрнах, благоприятно ориентированных к прилагаемому напряжению. Неблагоприятная ориентация соседних зёрен вызывает на их стыке возникновение значит. напряжений, к-рые приводят к зарождению трещин. Эти недостатки в структуре Be (малое количество плоскостей и направлений скольжения) устраняются в нек-рых Б. с., к-рые образуются введением т. н. пластичной матрицы (одного из металлов Ag, Sn, Cu, Si, A1 и др.). Матрица обволакивает зёрна Be и способствует релаксации напряжений на границах неориентированных зёрен и развитию пластич. деформации. При малом содержании в Be пластичной матрицы деформируется в основном Be, а матрица является релаксатором напряжений. При значит. содержании пластичной матрицы (напр., сплавы Be с Аl) пластич. деформация осуществляется в основном за счёт пластичного металла. Б. с. с повышенным содержанием пластичной матрицы легко деформируются (прокатываются, вытягиваются, куются), но обладают меньшей прочностью по сравнению с Б. с., имеющими пониженное содержание пластичной матрицы, и с Be. Б. с. системы Be-Ag, содержащие 1,9-3,7% Ag, обладают повышенной пластичностью; содержащие 20-40% Ag - повышенным сопротивлением ударным нагрузкам. Добавки к Be 2,7-2,9% Sn существенно улучшают его механнч. свойства в выдавленном и прокатанном состоянии при комнатной темп-ре. При использовании в качестве пластичной матрицы Сu и Ni в количестве 3% в процессе получения заготовок наблюдается образование хрупких бериллндов (напр., Ве2Сu и Ni5Be21). Добавление к сплавам Be-Сu 0,25% Р, замедляющего диффузию Сu и Be, предотвращает образование бериллида и повышает пластичность. Промышленными являются сплавы системы Be-А1, содержащие от 24 до 43% AI, называемые "локэллой" и разработанные в США фирмой "Локхид". Сплавы системы Be-Аl обладают рядом достоинств: они легче алюминиевых и магниевых сплавов, по сравнению с Be более пластичны, менее чувствительны к поверхностным дефектам, не требуют химия, травления после обработки резанием. Большой диапазон значений модуля упругости, прочности и пластичности, достигаемый в этих сплавах, значительно расширяет сферу их применения. Стремление получить Б. с. с большей прочностью по сравнению с Be (и Б. с. с пластичной матрицей) привело к созданию сплавов, упрочнённых дисперсной фазой. Упрочнителями являются интерметаллич. соединения, карбиды, нитриды, окислы. Механич. свойства (гл. образом прочностные) этих Б. с. повышаются введением тонкодисперсной упрочняющей фазы. Наличие дисперсной фазы приводит к возникновению напряжений в бериллие-вой матрице (в случае выделения из твёрдого раствора) или препятствует распространению скольжения (в случае образования интерметаллич. соединений). Оба процесса повышают прочностные характеристики. Степень упрочнения зависит от количества и типа упрочняющей фазы, от её связи с матрицей, от размера её частиц и расстояния между ними. Промышленный Be, содержащий значит, количество окиси бериллия, является, по существу, дисперсионно-упрочнённым сплавом. Разработаны Б. с., упроч-нителем в к-рых служат бериллиды. Лучшими прочностными свойствами обладают сплавы систем Be-Fe и Be-Со; сплавы Be-Сu и Be-Ni менее прочны, но более пластичны. При 400°С предел прочности сплава Be с 5% Со равен 430 Мн/м2, а с 3% Fe - 410 Мн/м2. Повышение прочностных свойств Б. с., упрочнённых дисперсной фазой, сопровождается уменьшением пластичности, что значительно усложняет технологию изготовления изделий. Изделия и полуфабрикаты из Б. с. изготовляют в основном методами порошковой металлургии, реже литьём. Высокопрочные дисперсионно-упрочнённые Б. с. получают обработкой горячепрессованных заготовок давлением в стальных оболочках при темп-рах 1010-1175°С. Изделия из Б. с.: прутки, трубы, конусы, листы, профили и др. Важным достижением в области создания материалов на бериллиевой основе, способных работать длит, время при 1100-1550°С и короткое время при 1700°С, является разработка интерметаллических соединений Be с др. металлами. Основное направление в применении Б. с.- конструкционные материалы для летательных аппаратов. Лит.; Дарвин Дж.,Баддери Дж., Бериллий, пер. с англ., М., 1962; Бериллий, под ред. Д. Уайта и Д. Бёрка, пер. с англ., М., 1960; Conference Internationale sur la metallurgiedu Beryllium, Grenoble, 17 -20mai 1965, P., 1966; The metallurgy of Beryllium. Proceedings or an International Conference organized by the Institute of Metals, London, 16 - 18 October, 1961, L., [1963] (Monograph and Report Series, № 28); Тугоплавкие металлические материалы для космической техники, пер. с англ., М., 1966- В. Ф.Гогуля. По материалам БСЭ. | |
Категория: Б | Добавил: lascheggia (23.09.2015) | |
Просмотров: 535 |